理差距所带来的运动模式不同。
所以。
从动力链传导的角度分析。
人体短跑的动力链遵循“核心驱动-上下肢协同”的传导路径。
起跑阶段的动力链始于下肢蹬离起跑器的地面反作用力,经由髋部、核心、肩部传递至上肢,形成一个闭环的力传导系统。
对于身高1米96的博尔特而言,其身体重心高度远超普通运动员,起跑阶段的核心难题是如何在保持重心稳定的前提下,将地面反作用力高效传递至髋部,驱动送髋动作。
而他的曲臂姿态,恰好针对这一难题提供了定制化解决方案——在肩关节处形成一个刚性支点,而非直臂姿态下的柔性摆动支点。
普通运动员的肩部支点,更多是承接下肢传导的力量,而博尔特的肩部刚性支点,由于超长臂展的存在,形成了一个“力的反射放大器”。
当下肢蹬离起跑器产生的地面反作用力向上传导至核心时,曲臂带来的肩部刚性支点,能够有效阻止力量向上肢末端的无效发散;同时,超长臂展形成的杠杆结构,会将这部分力量“反射”回髋部。
并通过杠杆放大效应。
提升送髋动作的力矩。
对于普通运动员而言,送髋动作的力矩主要依赖下肢肌肉的收缩,而博尔特则通过上肢的长杠杆反射,获得了额外的力矩加成!
这就是他在0-10米启动阶段,能够以远超身高预期的敏捷性完成送髋的核心原因。
具体而言,0-10米启动阶段结束后,运动员的身体重心从“前倾支撑”向“向前推进”过渡,此时的送髋动作需要一个向前的牵引力。
博尔特的曲臂摆动,在前摆时肘部保持90°左右的弯曲角度,前臂与地面近似平行,这个角度恰好让超长前臂的摆动方向与身体前进方向完全一致。
当手臂前摆时,肩部肌肉的收缩力通过曲臂的刚性结构,转化为一个向前的牵引拉力,这个拉力由于超长前臂的杠杆放大效应,强度远超普通运动员。
而拉力的作用点位于躯干上部,恰好能够带动髋部向前平移,形成“上肢牵引-髋部跟随”的高效送髋模式。
反观直臂摆动,博尔特的超长手臂若保持直臂姿态,摆动方向更多是垂直于身体前进方向的侧向分力,不仅无法形成有效的髋部牵引力,反而会因手臂过长导致重心左右偏移,干扰送髋动作的稳定性。
而普通运动员的直臂摆动,虽不会出现如此明显
本章未完,请点击下一页继续阅读!