????的积分曲线。这里你准备如何求解水平集和最速下降线曲率?”
佩雷尔曼沉思片刻,拿起笔,在稿纸上写道:
【设{????1,????2}是单位正交切标架,若????1是曲线的单位切向量,那么光滑曲线的测地曲率为??=,其中??是曲线的弧长参数.由{????1,????2}是单位正交切标架,测地曲率同样可以表示为??=??=??div(????2),这等价于说,光滑曲线的测地曲率是曲线的单位法向量的微分。】
庞学林淡淡一笑,对佩雷尔曼的解释不可置否,又翻到了第十页,指着上面的证明道:“那这里,在空间形式????中,??是定义在严格凸环??2????1上的调和函数,??连续到??2????1。若??满足??|????1= 1,??|????2=0,那么,就有|????|(??)>0,????∈??2????1,并且??的水平集严格凸。你在最后部分是如何给出极值原理的?”
佩雷尔曼继续解释:【Ω是????中有界连通区域,??∈??2(Ω)??????(Ω),在Ω上考虑算子??????=??????(??)????????+????(??)??????+??(??)??……】
“那这里呢???是具有常截面曲率的黎曼流形????上的光滑函数,????????和????分别是????上的 Riemannian 曲率张量和 Ricci 曲率,那么??????=????????+??????????????和????????=????????????2????????????????+????????????+R??????????……这个如何证明?”
【取 1 ≤??,??,??,??,??≤??, 1 ≤??≤??+ 1。取????中的正交标架场{????1,????2,……,??????,??????+1},其中??????+1为外法向,则{????1,????2,……,????i}为切标架场,且????=??????+1,运动方程为……】
……
在一旁观看的望月新一有些奇怪,庞学林怎么老是在黎曼流形问题上打转,而且问的都是一些比较浅显的问题,有些引理或者定义,推导出来是非常显而易见的。
倒是佩雷尔曼并没有表现出多少不耐烦的神情,
本章未完,请点击下一页继续阅读!